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1. Quantum computing basic knowledge.

2. The flow:

3. Optimized circuit cutting: sparse 
tensor preparation  and contraction.
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Intro to Quantum Computing

• quantum state representation:

state vector

density matrix



Intro to Quantum Computing

• State vector can represent a quantum state.
• State vector is in a complex inner product space.
• Bra-ket notation for state vector:

• |𝜓⟩ (called ket psi) is a coloum vector.
• ⟨𝜙| (called bra phi) is a row vector.
• ⟨𝜓| is the conjugate transpose of |𝜓⟩
• 𝜙 𝜓  is the complex inner product of the two vectors.



Intro to Quantum Computing

• Quantum State:
• 1-qubit state: 𝜓 = 𝛼 0 + 𝛽|1⟩

• 0 =
1
0
, 1 =

0
1

 forms an orthonormal bases in ℂ2.

• Other choices of bases:

• + =
1/√2

1/√2
, − =

1/√2

−1/√2

• 𝑖 =
1/√2

𝑖/√2
, −𝑖 =

1/√2

−𝑖/√2
, 𝑖 −𝑖 =

1

√2

−𝑖

√2

1/√2

−𝑖/√2
= 0



Intro to Quantum Computing

• Quantum State:
• 1-qubit state: 𝜓 = 𝛼 0 + 𝛽|1⟩

• 𝛼 2 + 𝛽 2 = 1

• When you observe 𝜓  in 0 , 1  bases, 𝜓  will collapse to any of the two 
basis.

• You will observe 0  with probability 𝛼 2, observe 1  with probability |𝛽|2.
• In real quantum computers, multiple shots will be performed to have a 

guess of 𝛼 2 and 𝛽 2.



Intro to Quantum Computing

• Quantum State:
• 00  is the tensor product of 0  and 0

• 00 =
1
0
⊗

1
0

=

1
0
0
0

• 2-qubit state: 𝜓 = 𝛼0 00 + 𝛼1 01 +
𝛼2 10 + 𝛼3|11⟩

• 𝛼0
2 + 𝛼1

2 + 𝛼2
2 + 𝛼3

2 = 1

• For example, 1
2
00 +

1

2
01 +

1

2
10 +

1

2
11  taking 4000 shots, see the right Fig.



Intro to Quantum Computing

• Quantum State:
• N-qubit state: 𝜓 = 𝛼0 00…00 + 𝛼1 00…01 +⋯𝛼2𝑛−1|11…11⟩

• σ𝑖=0
2𝑛−1𝛼𝑖 = 1

• For example,  5-qubit state after 4000 shots.



Intro to Quantum Computing

• Unitary Operation:
• 𝑈 is a unitary matrix. 𝜓∗ ← 𝑈 𝜓

• For example, to create a bell state 1
√2

00 +
1

√2
|11⟩:

• 1. initial quantum state:  00 =

1
0
0
0

• 2. apply Hadamard gate to qubit zero:
• Hadamard gate: 𝐻 =

1

√2

1 1
1 −1

• the state after Hadamard gate: I ⊗ 𝐻 00 =
1

√2

1
1
0
0

= 0 ⊗
1

√2
(|0⟩ + |1⟩)

• 2. apply CNOT gate from qubit zero to qubit one:

• CNOT gate: 𝐶𝑁𝑂𝑇 =

1
1

1
1

• the state after CNOT gate: 𝐶𝑁𝑂𝑇( 0 ⊗
1

2
(|0⟩ + |1⟩)) =

1

2

1
0
0
1

=
1

√2
00 +

1

√2
|11⟩

𝐶𝑁𝑂𝑇 𝐼 ⊗𝐻 |00⟩



Intro to Quantum Computing

• State vector simulator:
• exponential time and memory cost w.r.t. #qubits.
• 128GB memory needed to simulate 34-qubit, then twice the memory 

needed for each extra qubit.

Credit: BlueQubit
https://app.bluequbit.io/docs#a_b



Intro to Quantum Computing

• quantum state representation:

state vector

density matrix



Intro to Quantum Computing

• The expectation value of a state |𝜓⟩ on an observable ෠𝑂.
𝜓 ෠𝑂 𝜓

• In quantum chemistry: minimizing 𝜓 ෠𝑂 𝜓 ⇒calculating the 
ground state energy of a molecule.

• Density matrix: 𝜌 = |𝜓⟩⟨𝜓|, then 𝜓 ෠𝑂 𝜓 = 𝑡𝑟𝑎𝑐𝑒 𝜌 ෠𝑂 .

• 𝜓 ∈ ℂ2
𝑛

; 𝜌, ෠𝑂 ∈ ℂ2
𝑛×2𝑛; 𝜌, ෠𝑂 are Hermitian matrices.

• 𝑡𝑟𝑎𝑐𝑒 𝜌 ෠𝑂  is taking the inner product of the two matrices.



Intro to Quantum Computing

• Pauli matrices:

𝐼 = 1
1

, 𝑋 = 1
1

, 𝑌 = −𝑖
𝑖

, 𝑍 = 1
−1

• 𝐼, 𝑋, 𝑌, 𝑍 forms a bases in ℂ2×2.

• The tensor product of them forms a bases in ℂ2
𝑛×2𝑛.

• E.g. 𝑌𝑌𝑋𝑌:= 𝑌 ⊗ 𝑌⊗𝑋⊗ 𝑌

• 4𝑛 Pauli strings/bases for n-qubit state
• Quantum state tomography:

• Measure the expval on each basis. 𝜌

𝐼𝑋𝑌…𝑍

𝑌𝑌𝑋…𝑌

𝑌𝑋𝑍…𝑍

……

𝑡𝑟𝑎𝑐𝑒(𝜌 × 𝑌𝑌𝑋…𝑌)



Quantum Circuit to Bayesian Network

• The Bell state: 1
2
(|00⟩ + |11⟩) = 𝐶𝑁𝑂𝑇 𝐼 ⊗ 𝐻 |00⟩ in density 

matrix representation calculate by hand :
• The initial state 𝜌0 = |00⟩⟨00| =

1

4
𝐼𝐼 +

1

4
𝐼𝑍 +

1

4
𝑍𝐼 +

1

4
𝑍𝑍.

• After Hadamard 𝜌1 = 𝐻𝜌0𝐻
†= 1

4
𝐼𝐼 +

1

4
𝐼𝑋 +

1

4
𝑍𝐼 +

1

4
𝑍𝑋.

• After CNOT 𝜌2 = 𝐶𝑁𝑂𝑇𝜌1𝐶𝑁𝑂𝑇
† = 1

4
𝐼𝐼 +

1

4
𝑋𝑋 −

1

4
𝑌𝑌 +

1

4
𝑍𝑍.



s0 w
I 0.5
X 0
Y 0
Z 0.5

s1 w
I 0.5
X 0
Y 0
Z 0.5

s0 s2 w

I I 1

X Z 1

Z X 1

Y Y -1

otherwise 0
This tensor’s size is 16 but only 4 
entries have non-zero weights.

s2 w
I 0.5
X 0.5
Y 0
Z 0

Tensor 1

Tensor 2

Tensor 3

Tensor 4
Contract tensor 1 and 
tensor 3, get tensor 4.



s2 w
I 0.5
X 0.5
Y 0
Z 0

s1 w
I 0.5
X 0
Y 0
Z 0.5
Tensor 2

Tensor 4



s2 w
I 0.5
X 0.5
Y 0
Z 0

s1 w
I 0.5
X 0
Y 0
Z 0.5
Tensor 2

Tensor 4

s2 s1 s3 s4 w

I I I I 1

I X I X 1

I Y Z Y 1

I Z Z Z 1

X I X X 1

X X X I 1

X Y Y Z 1

X Z Y Y -1

Y I Y X 1

Y X Y I 1

Y Y X Z -1

Y Z X Y 1

Z I Z I 1

Z X Z X 1

Z Y I Y 1

Z Z I Z 1

otherwise 0

Tensor 5
This tensor’s size is 256 
but only 16 entries have 
non-zero weights.

Next page: contract tensor 4, 2 
and 5, get tensor 6.



s3 s4 w

I I 0.25

X X 0.25

Y Y -0.25

Z Z 0.25

otherwise 0

Tensor 6

Tensor 6 matches the hand-calculated  1
4
𝐼𝐼 +

1

4
𝑋𝑋 −

1

4
𝑌𝑌 +

1

4
𝑍𝑍.



Tensor Contraction

• 𝐷𝑖,𝑗 = σ𝑘,𝑙,𝑝,𝑟 𝐴𝑖,𝑘,𝑝,𝑟𝐵𝑘,𝑙𝐶𝑙,𝑝,𝑟,𝑗

A
C

B

D
contraction



Bayesian Network to Tensor Network

s3 s4 w

I I 0.25

X X 0.25

Y Y -0.25

Z Z 0.25

otherwise 0

Tensor 6

After contraction:



Expectation Value on an Observable

• If we want to know the expectation value on observable 𝑌𝑌.

• ෠𝑂 = 𝑌𝑌, the bell state is  𝜌 = 1

4
𝐼𝐼 +

1

4
𝑋𝑋 −

1

4
𝑌𝑌 +

1

4
𝑍𝑍.

• The expectation value is 𝑡𝑟𝑎𝑐𝑒 𝜌 ෠𝑂 = −
1

4
𝑡𝑟𝑎𝑐𝑒 𝐼𝐼 = −1.

s3 w
I 0
X 0
Y 1
Z 0

Tensor 7

s4 w
I 0
X 0
Y 1
Z 0

Tensor 8



#Qubits vs Treewidth

• Suppose we want to know the expval of GHZ state on an 
observable. 



Circuit Cutting

Credit: Lian, Hang & Xu, Jinchen & Zhu, Yu & Fan, Zhiqiang & Liu, Yi & Shan, Zheng. (2023).
Fast reconstruction algorithm based on HMC sampling. Scientific Reports. 13. 10.1038/s41598-023-45133-z. 



Example

• Subcircuit 1 has 2 open edges;
• Subcircuit 2 has 2 open edges;
• Run 16 different settings of
each subcircuit to fill in the two tensors.

s0 s1 w
I I ?
I X ?
I Y ?
I Z ?

… … …

s’0 s’1 w
I I ?
I X ?
I Y ?
I Z ?

… … …



Impact of Topology

• We want each tensor to have as less open edges as possible, and 
meanwhile reduce the maximum #qubits.

Credit: https://pennylane.ai/qml/demos/tutorial_quantum_circuit_cutting/ 



Impact of Topology

• We want each tensor to have as less open edges as possible, and 
meanwhile reduce the maximum #qubits.

Credit: https://medium.com/colibritd-quantum/getting-to-know-quantum-fourier-transform-ae60b23e58f4



Impact of Determinism

• Clifford gates’ Conditional Probability Distributions(CPD) is 
deterministic.
• If an n-qubit unitary matrix is Clifford, the tensor size is 4𝑛 × 4𝑛, and there 

are only 4𝑛 non-zero weights.
• Clifford gates stabilize Pauli strings. In other words, Clifford gate will only 

do a permutation of all Pauli strings.

• For a non-Clifford gate, like T gate, the Conditional Probability 
Distributions is not deterministic.



Knowledge Compilation



Knowledge Compilation

• We can know which entries have 
zero weight.

• Subcircuit 1 has 4 non-zero weights.
• Subcircuit 2 has 8 non-zero weights.

s0 s1 w
I I ?
I X ?
I Y ?
I Z ?

… … …

s’0 s’1 w
I I ?
I X ?
I Y ?
I Z ?

… … …



Knowledge Compilation

• Save subcircuit executions!
• Subcircuit 1: 16 settings→4 settings.
• Subcircuit 2: 16 settings→8 settings.



Error Mitigation



Impact of Sparsity

• We know the tensors are actually very sparse.
• We propose using sparse tensor contraction:



Impact of Sparsity



Impact of Sparsity

• For bigger-sized problems, it’s even more sparse.



Conclusion

• From the intuition that Clifford gates stabilize Pauli strings:
• Tensors in quantum simulation are sparse.
• In circuit cutting, sparsity can save the effort to create the tensor 

(subcircuit executions) and contract the tensor (classical 
postprocessing).

• Proposed clever tomography to reduce the effort of subcircuit executions 
and mitigate errors.

• Proposed using sparse tensor contraction to save memory footprint 
during classical postprocessing.



Thank you!
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