Full-stack Optimization of Quantum Chemistry Simulation

Qualification exam for Zirui Li May 8th, 2025

Committee: Yipeng Huang, Eddy Z. Zhang, Mario Szegedy, Jingjin Yu

Variational quantum eigensolver

 $\widehat{H}|\Psi\rangle = E_0|\Psi\rangle$

- Predicting molecular properties
 - Geometry, bond length, angles...

Credit:http://openqemist.1qbit.com/docs/vqe_microsoft_qsharp.html

- Calculate reaction energies
 - Photoelectrochemistry, catalysts.

- Predict protein folding
 - Solve the Hamiltonian for amino acids.

Credit: A. Robert *et al. Resource-efficient quantum algorithm for protein folding* https://www.mathworks.com/help/matlab/math/ground-state-protein-folding-using-variational-quantum-eigensolvervqe.html#mw_rtc_ProteinFoldingVQEExample_M_D161DD34

Outline

- Background of quantum chemistry
- Quantum chemistry algorithm compilation
- Quantum chemistry algorithm execution
- Quantum chemistry algorithm design

Outline

• Background of quantum chemistry

- Quantum chemistry algorithm compilation
- Quantum chemistry algorithm execution
- Quantum chemistry algorithm design

Quantum Chemistry

Molecule

Hamiltonian matrix

Quantum Chemistry

- Solve Schrodinger equation: $\widehat{H}|\Psi\rangle = E|\Psi\rangle$
- \widehat{H} is the Hamiltonian for electron dynamics (after Born-Oppenheimer Approximation):

Quantum Chemistry

- Hartree-Fock method
- Second quantization

	State Ψ>	Hamiltonian \widehat{H}
Before	Cartesian Space R ³	$\widehat{H} = -\sum_{i} \frac{1}{2} \nabla_i^2 - \sum_{i} \sum_{A} \frac{Z_A}{r_{iA}} + \sum_{i < j} \frac{1}{r_{ij}}$
After	Fock Space	$\widehat{H} = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$

Second quantization

- Fock space
 - Let *N* be the total number of orbitals.
 - *M* be the number of electrons.
 - Fock space basis represent occupation of orbitals.
 - Example:
 - N = 4, M = 2, $|0101\rangle_F$ means orbital 0 and 2 are occupied.
 - Any 2-electron state is a linear combination of $\binom{4}{2}$ basis.
 - $|\Psi_{e_1e_2}\rangle = c_0|0011\rangle_F + c_1|0101\rangle_F + c_2|0110\rangle_F + c_3|1001\rangle_F + c_4|1010\rangle_F + c_5|1100\rangle_F$

Second quantization

Hamiltonian

$$\widehat{H} = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

- Creation operator: $a^{\dagger}|0\rangle_F = |1\rangle_F$, $a^{\dagger}|1\rangle_F = 0$
- Annihilation operator: $a|0\rangle_F = 0$, $a|1\rangle_F = |0\rangle_F$
- h_{pq} and V_{pqrs} : precomputed coefficients.

Second quantization

- State $|\Psi\rangle$: a 2^N dimensional vector
- Hamiltonian \widehat{H} : a $2^N \times 2^N$ Hermitian matrix
- $\widehat{H}|\Psi\rangle = E|\Psi\rangle$:
 - a PDE problem to a matrix eigenvalue problem

	State Ψ>	Hamiltonian \widehat{H}
Before	Wavefunction on Cartesian Space R^3	$\widehat{H} = -\sum_{i} \frac{1}{2} \nabla_i^2 - \sum_{i} \sum_{A} \frac{Z_A}{r_{iA}} + \sum_{i < j} \frac{1}{r_{ij}}$
After	State vector on Fock Space	$\widehat{H} = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$

Variational Principal

- $\langle \Psi | \hat{H} | \Psi \rangle \ge E_0$, E_0 is the true ground state energy.
- Solve $\widehat{H}|\Psi\rangle = E_0|\Psi\rangle \Leftrightarrow \operatorname{argmin}(\langle \Psi|\widehat{H}|\Psi\rangle)$

Variational quantum eigensolver

- Use ansatz (parameterized quantum circuit) to probe the ground state $|\Psi(\vec{\theta})\rangle = U(\vec{\theta})|\Psi_{init}\rangle$.
- Objective function: $C(\vec{\theta}) = \langle \Psi(\vec{\theta}) | \hat{H} | \Psi(\vec{\theta}) \rangle$.
- Classical optimizer to minimize $C(\vec{\theta})$.

Hamiltonian matrix

Variational quantum eigensolver

Design $U(\vec{\theta})$, the logical parameterized circuit.

Challenge: How to make the ansatz reach the ground state?

1.HWEA

2. UCCSD

Credit: D. Ferrari *et al. Deterministic algorithms for compiling quantum circuits with recurrent patterns* https://link.springer.com/article/10.1007/s11128-021-03150-9

Credit: https://medium.com/@stephen.diadamo/distributed-quantum-computing-1c5d38a34c50

Outline

- Background of quantum chemistry
- Quantum chemistry algorithm compilation
- Quantum chemistry algorithm execution
- Quantum chemistry algorithm design

Outline

- Background of quantum chemistry
- Quantum chemistry algorithm compilation
 - Introduce UCCSD ansatz
 - Tetris compiler for UCCSD ansatz
- Quantum chemistry algorithm execution
- Quantum chemistry algorithm design

UCCSD Ansatz

$$E_0 = \min_{\vec{\theta}} \langle \Psi(\vec{\theta}) | \hat{H} | \Psi(\vec{\theta}) \rangle$$

Unitary Coupled Cluster with Singles and Doubles

- $|\Psi(\vec{\theta})\rangle = e^{T(\vec{\theta}) T^{\dagger}(\vec{\theta})} |\Psi_{HF}\rangle$
- $T(\vec{\theta}) = \sum_{p,q} \theta_{pq} a_p^{\dagger} a_q + \sum_{p < q,r < s} \theta_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$

• First-Order Trotter Approximation $e^{A+B} = \lim_{n \to \infty} (e^{A/n} e^{B/n})^n$

Jordan-Wigner Encoder

- a_p^{\dagger}, a_p : creation/annihilation operator \Rightarrow qubit operator
- $|\Psi\rangle$: Fock space \Rightarrow qubit space
- \widehat{H} : operator on Fock space \Rightarrow operator on qubit space
- Anticommutation requirements: $\{A, B\} = AB + BA$

•
$$\{a_{p}^{\dagger}, a_{q}^{\dagger}\} = 0, \{a_{p}, a_{q}\} = 0, \forall p, q$$

• $\{a_{p}^{\dagger}, a_{q}\} = \begin{cases} 0 \ if \ p \neq q \\ 1 \ if \ p = q \end{cases}$

Jordan-Wigner Encoder

• Pauli matrices:

$$X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, Y = \begin{bmatrix} -i \\ i \end{bmatrix}, Z = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• $a_p \coloneqq Z_0 \dots Z_{p-1} \frac{X_p + iY_p}{2}$
• $a_p^{\dagger} \coloneqq Z_0 \dots Z_{p-1} \frac{X_p - iY_p}{2}$

• Example: Pauli string $YYXY := Y \otimes Y \otimes X \otimes Y$

$$\cdot e^{\theta_{pq}\left(a_{p}^{\dagger}a_{q}-a_{q}^{\dagger}a_{p}\right)} = \exp\left(\frac{i}{2}\theta_{pq}\bigotimes_{j=p+1}^{q-1}Z_{j}*\left(Y_{p}X_{q}-Y_{p}X_{q}\right)\right)$$

$$= \exp\left(\frac{i}{2}\theta_{pq}\left(Y_{p}Z_{p+1}\ldots Z_{q-1}X_{q}-Y_{p}Z_{p+1}\ldots Z_{q-1}X_{q}\right)\right)$$

$$\cdot e^{\theta_{pqrs}\left(a_{p}^{\dagger}a_{q}^{\dagger}a_{s}a_{r}-a_{r}^{\dagger}a_{s}^{\dagger}a_{q}a_{p}\right)} =$$

$$\exp\left(\frac{i}{8}\theta_{pqrs}\bigotimes_{j\in(p,q)\cup(r,s)}Z_{j}*\left(X_{p}X_{q}Y_{r}X_{s}+Y_{p}X_{q}Y_{r}Y_{s}+X_{p}Y_{q}Y_{r}Y_{s}+X_{p}X_{q}X_{r}Y_{s}-X_{p}Y_{q}X_{r}X_{s}-Y_{p}Y_{q}X_{r}Y_{s}-Y_{p}Y_{q}Y_{r}X_{s}-Y_{p}X_{q}X_{r}X_{s}\right), \text{ let } p < q < r < s.$$

- Pauli evolution gates sequence for some p,q,r,s $e^{\frac{i}{8}\theta_{pqrs}*IXZZZXIIYZZXI}$ $e^{\frac{\iota}{8}\theta_{pqrs}*IYZZZXIIYZZYI}$ $e^{\frac{\iota}{8}\theta_{pqrs}*IXZZZYIIYZZYI}$ $e^{\frac{\iota}{8}\theta_{pqrs}*IXZZZXIIXZZYI}$ $e^{-\frac{l}{8}\theta_{pqrs}*IXZZZYIIXZZXI}$ $e^{-\frac{1}{8}\theta_{pqrs}*IYZZZYIIXZZYI}$ $e^{-\frac{\iota}{8}\theta_{pqrs}*IYZZZYIIYZZXI}$ $e^{-\frac{\iota}{8}\theta_{pqrs}*IYZZZXIIXZZXI}$
 - feasible on quantum computer

• The ansatz becomes a sequence of blocks of Pauli evolution gates.

$$|\Psi(\vec{\theta})\rangle = \prod_{j} e^{i\theta_{j} \operatorname{PauliString}_{j}} |\Psi_{HF}\rangle$$
$$\widehat{H} = \sum_{k} w_{k} \operatorname{PauliString}_{k}$$
$$C(\vec{\theta}) = \sum_{k} w_{k} \langle \Psi(\vec{\theta}) | \operatorname{PauliString}_{k} | \Psi(\vec{\theta}) \rangle$$

Takeaway:

- Jordan-Wigner transformation and two steps of Trotter approximation:
 - the ansatz becomes a list of blocks of Pauli evolution gates.
 - the Hamiltonian becomes a list of weighted Pauli strings.
- Both lists scale as $O(N^4)$, N is the number of orbitals.

Outline

- Background of quantum chemistry
- Quantum chemistry algorithm compilation
 - Introduce UCCSD ansatz
 - Tetris compiler for UCCSD ansatz
- Quantum chemistry algorithm execution
- Quantum chemistry algorithm design

Tetris: A Compilation Framework for VQA Applications in Quantum Computing

Yuwei Jin*, Zirui Li*, Fei Hua, Tianyi Hao, Huiyang Zhou, Yipeng Huang, Eddy Z. Zhang

How to compile a single Pauli string?

• Example: $\exp(i\theta_1 ZZYX)$.

Note: Y gate here is $R_X(\frac{\pi}{2})$. It has different meaning from Pauli letter Y in the pauli string.

Root and leaves

Cancelation opportunity

• Inside each block, the Pauli strings usually share the same I and non-I locations.

IIXZZXIIIYXZX IXZZYIIIXXZX IXZZXIIIYZZY IXZZYIIXXZY IXZZYIIXYZZY IXZZXIIXYZZX IXZZXIIXX IXZZXXIXX IXZZXXXXX

Cancelation opportunity

 I I X Z Z Z X I I I I Y Z Z X

 I X Z Z Z Y I I I I X Z Z X

 I X Z Z Z Y I I I I X Z Z X

 I I Y Z Z Z Y I I I I X Z Z Y

 I I X Z Z Z Y I I I I X Z Z Y

 I I X Z Z Z Y I I I I X Z Z Y

 I I X Z Z Z Y I I I I X Z Z Y

 I I X Z Z Z Y I I I I X Z Z Y

 I I X Z Z Z Y I I I I X Y

 I I Y Z Z Z Y I I I I X Y

 I I Y Z Z Z Y I I I I X Y

 I I Y Z Z Z Y

 I I X Z Z Z Y

 I I X Z Z Z Y

 I I X Z Z Z Y

 I I X Z Z Z Y

 I I X Z Z Z X

 I I X Z Z Z X

 I I X Z Z Z X

 I I X Z Z Z X

 I I X Z Z Z X

 </tbr>

 I I X Z Z Z X

 </tbr>

- The green part is the qubits that share the same letters for every Pauli string.
- The green part is cancelable.

Cancelation opportunity

If we put green part away from the leaf, no cancellation opportunity.

 If we put green part close to the leaf, cancellation will happen.

Cancelation opportunity

- Takeaway:
 - Qubits that have identical letters are cancelable
 - Put the cancelable qubits at the leaves part of the tree can cancel more gates.

Connectivity Constrains

- Superconducting quantum computers have connectivity constrains.
- Example: Map qubits in Pauli IIXZZZXIIIYZZX evolution gate to the heavyhex topology hardware.
 - Logical qubit 0, 1, 2, 3, 8, 9, 10, 11, 12 are non-l.

What's a good qubit mapping?

I I X Z Z Z X I I I I Y Z Z X I I X Z Z Z Y I I I I X Z Z X I I Y Z Z Z X I I I I Y Z Z Y I I Y Z Z Z Y I I I I X Z Z Y I I X Z Z Z Y I I I I Y Z Z Y I I X Z Z Z Y I I I I Y Z Z X I I X Z Z Z X I I I I X Z Z Y I I Y Z Z Z X I I I I X Z Z X

 Our proposal: Map as many green part to the leaves of the tree.

Qubit Routing

- We know how to find a good qubit mapping for each block.
- Q: How to switch qubit mappings between blocks?
 - A: Add swap gates. (Each swap gate costs 3 CNOT gates.)

An important metric

- 2-qubit gate count
 - (2-qubit gates are hard and noisy).

Total 2-qubit gate count

- =2-qubit gate count in the logical circuit
- 2-qubit gates canceled
- + 2-qubit gates added from swaps
- Goal: maximize cancelation, minimize swaps

Tradeoff between cancelation and swap insertions

Tradeoff between cancelation and swap insertions

Evaluation

• Reduce the CNOT gate count by $\sim 20\%$.

Outline

- Background of quantum chemistry
- Quantum chemistry algorithm compilation
- Quantum chemistry algorithm execution
- Quantum chemistry algorithm design

A Case for Quantum Circuit Cutting for NISQ Applications: Impact of topology, determinism, and sparsity

Zirui Li, Minghao Guo, Mayank Barad, Wei Tang, Eddy Z. Zhang, Yipeng Huang

Quantum circuit cutting

Credit: Lian, Hang & Xu, Jinchen & Zhu, Yu & Fan, Zhiqiang & Liu, Yi & Shan, Zheng. (2023). Fast reconstruction algorithm based on HMC sampling. Scientific Reports. 13. 10.1038/s41598-023-45133-z.

Quantum circuit to Bayesian network

- Record the density matrix in Pauli string format.
- Identity matrix and Pauli matrices:

$$I = \begin{bmatrix} 1 & & \\ & 1 \end{bmatrix}, X = \begin{bmatrix} & 1 \\ 1 & & \end{bmatrix}, Y = \begin{bmatrix} & -i \\ i & & \end{bmatrix}, Z = \begin{bmatrix} 1 & & \\ & -1 \end{bmatrix}$$

- I, X, Y, Z form an orthogonal basis for all Hermitian matrices in $\mathbb{C}^{2 \times 2}$.
- 4^n Pauli strings form the basis for n-qubit density matrix state in $\mathbb{C}^{2^n \times 2^n}$

Quantum circuit to Bayesian network

- The Bell state: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = CNOT(I \otimes$ H(00) in density matrix representation calculate by hand :
 - The initial state $\rho_0 = |00\rangle\langle 00| = \frac{1}{4}II + \frac{1}{4}IZ + \frac{1}{4}ZI + \frac{1}{4}ZZ$.

 - After Hadamard $\rho_1 = H\rho_0 H^{\dagger} = \frac{1}{4}II + \frac{1}{4}IX + \frac{1}{4}ZI + \frac{1}{4}ZX.$ After CNOT $\rho_2 = CNOT\rho_1 CNOT^{\dagger} = \frac{1}{4}II + \frac{1}{4}XX \frac{1}{4}YY + \frac{1}{4}ZZ.$

Tensor 3

Tensor 2

				s2	s1	s3	s4	
	s2	W		I	I	I	I	
	Ι	0.5	$(s0) - H \rightarrow (s2)$	I	Х	Ι	Х	
	Х	0.5		I	Y	Z	Y	
	Y	0		I	Z	Z	Z	
	7	0		Х	I	Х	Х	
	ے ب	0		X	Х	Х	Ι	
	lens	or 4			Y	Y	Z	
				Х	Z	Y	Y	
	c1	\ \/	Next page: contract tensor 4, 2	Y	Ι	Y	Х	
			and 5, get tensor 6.	Y	Х	Y	I	
		0.5		Y	Y	Х	Z	
	Х	0		Y	Z	Х	Y	
	Y	0	Tensor 5	Z	Ι	Z	Ι	
	7	0.5	This tensor's size is 256 bu only 16 entries have non-	Z	Х	Z	Х	
	- Tonce	nsor 2	zero weights.	Z	Y	I	Y	
rensor		л ∠		Z	Z	I	Z	
					othe	rwise		

Tensor 6 matches the hand-calculated
$$\frac{1}{4}II + \frac{1}{4}XX - \frac{1}{4}YY + \frac{1}{4}ZZ$$
.

Tensor contraction

•
$$D_{i,j} = \sum_{k,l,p,r} A_{i,k,p,r} B_{k,l} C_{l,p,r,j}$$

Bayesian network to tensor network

After contraction:

s3	s4	w				
I	I	0.25				
Х	Х	0.25				
Y	Y	-0.25				
Z	Z	0.25				
othe	0					
Tensor 6						

Expectation value on an observable

- If we want to know the expectation value on observable YY.
- $\hat{O} = YY$, the bell state is $\rho = \frac{1}{4}II + \frac{1}{4}XX \frac{1}{4}YY + \frac{1}{4}ZZ$.
- The expectation value is $trace(\rho \hat{O}) = -\frac{1}{4}trace(II) = -1$.

Cut the tensor network

- Subcircuit 1 has 2 open edges;
- Subcircuit 2 has 2 open edges;
- Run 3*4 different settings of each subcircuit to fill in the two tensors.

1

W

2

2

?

?

. . .

s0	s1	W	s'0	S
I	I	?	I	
I	Х	?	I)
I	Y	?	I	١
I	Ζ	?	I	-
•••	•••	•••	•••	

Determinism

- Clifford gates' tensor is deterministic.
 - Clifford gates stabilize Pauli strings.
 - Clifford gate will only do a permutation of all Pauli strings.
 - Only 4^n out of $4^n * 4^n$ tensor entries are non-zero.
- For a non-Clifford gate, like T gate, the tensor is not deterministic.

Knowledge compilation

W

?

?

?

?

...

- We know which entries have zero value after knowledge compilation.
- Subcircuit 1 has 4 non-zero values.
- Subcircuit 2 has 6 non-zero values.

s0	s1	W
I	I	?
Ι	Х	?
Ι	Y	?
Ι	Z	?
•••	•••	•••

Knowledge compilation

Tensor sparsity

Workloads	#Qubits	#Layers	Subcircuit #qubits	Tensor 1	Tensor 2	Subcircuit 1	Subcircuit 2
workioaus			constraints	sparsity	sparsity	req. experiments	req. experiments
Pairwise HWEA	8	1	5	0.0%	0.0%	4/4	3/3
Pairwise HWEA	8	2	5	0.0%	0.0%	12/12	12/12
Pairwise HWEA	8	4	5	0.0%	0.0%	144/144	144/144
3-local HWEA	8	1	5	75.0%	75.0%	81/144	100/144
QNN	4	2	3	42.1%	84.6%	93/108	72/192

Pairwise HWEA

Precision and accuracy

- Higher precision.
- Same accuracy.
- #trials: 100
- #total shots: 100K

End-to-end accuracy on QNN

Dataset: IRIS 2-classification

Classical postprocessing

Outline

- Background of quantum chemistry
- Quantum chemistry algorithm compilation
- Quantum chemistry algorithm execution
- Quantum chemistry algorithm design

Quantum chemistry simulation stack

1. UCCSD ansatz

- 2. Hardware efficient ansatz
- 3. Hamming weight preserving ansatz

What's a good ansatz?

- Accuracy
- Trainability
- Noise-resilience

Different ansatzes

- $E_0 = \min_{\vec{\theta}} \langle \Psi(\vec{\theta}) | \hat{H} | \Psi(\vec{\theta}) \rangle$
- $|\Psi(\vec{\theta})\rangle$ is generated by ansatz.
- UCCSD:
 - chemistry inspired, high accuracy,
 - but too deep, hard to implement.
- HWEA:
 - hardware efficient, easy to implement,
 - but too weak, low accuracy.

Hamming weight preserving ansatz

N is number of orbitalsM is the number of particles

• Only explore the subspace expanded by $\binom{N}{M}$ basis.

Hamming weight preserving ansatz

- Preserve the number of particles.
- Accuracy: outperforms UCCSD

Hamming weight preserving ansatz

• Trainability:

- *N* is number of orbitals
- *M* is the number of particles
- $Var_{\theta}[\partial_{l}tr(\rho \hat{O})] \approx \frac{1}{\binom{N}{N/2}}$ when $M = \frac{N}{2}$

•
$$Var_{\theta}[\partial_{l}tr(\rho \hat{O})] \approx \frac{16}{N^{3}}$$
 when $M = 1$

(Credit: https://arxiv.org/pdf/2412.04825)

- For reference: trainability for 2-design HWEA :
 - $Var_{\theta}\left[\partial_{l}tr(\rho\hat{O})\right] \approx \frac{1}{2^{3n-1}}tr(H^{2})tr(\rho^{2})tr(\hat{O}^{2})$

Hamming weight preserving ansatz

- Noise resilience:
 - Implement 1 beam-splitter (BS) gate costs 3 CNOT gates.

Future Work

quantum architecture search for a hamming weight preserving ansatz

resynthesize hamming weight

parity check to mitigate error

Q&A.

An ongoing project on Hamming weight preserving ansatz.

Y. Jin *et al.*, "Tetris: A Compilation Framework for VQA Applications in Quantum Computing," *ISCA 2024*

Z. Li *et al.*, "A Case for Quantum Circuit Cutting for NISQ Applications: Impact of topology, determinism, and sparsity" preprint@arxiv2412.17929

Supplementary materials

Hydrogen Atom

•
$$\left(-\frac{1}{2}\nabla^2 - \frac{1}{r}\right)|\Psi\rangle = E|\Psi\rangle$$

- $E_n = -\frac{1}{2n^2}$, n is the energy level.
- Each eigenstate ϕ_1, ϕ_2, \dots is an orbital.

Hydrogen Atom

- Takeaway:
 - ϕ_1, ϕ_2, \dots are eigenstates of the Hamiltonian.
 - $\phi_1, \phi_2, ...$ form a complete orthonormal basis.
 - Any valid wavefunction: $|\Psi\rangle = c_1\phi_1 + c_2\phi_2 + \cdots$

Helium Atom

- Two electrons correlated.
- The wavefunction $\Psi(r_1, r_2)$ is hard to solve.

- Approximation: Hartree-Fock method
 - Ignore the correlation.
 - Solve each single-electron orbitals independently: ϕ_1, ϕ_2, \ldots
 - Slater determinant to combine the orbitals

$$\Psi_{HF}(r_1, r_2) = \frac{1}{\sqrt{2!}} \begin{bmatrix} \phi_1(r_1) & \phi_2(r_1) \\ \phi_1(r_2) & \phi_2(r_2) \end{bmatrix}$$

Helium Atom

- Takeaway:
 - In a two-electron system
 - Solve single-electron orbitals:
 - $\phi_1, \phi_2, \phi_3, \phi_4 \dots$
 - The Slater determinant of ϕ_i and ϕ_j $\Psi_{ij}(r_1, r_2) = \frac{1}{\sqrt{2!}} \begin{bmatrix} \phi_i(r_1) & \phi_j(r_1) \\ \phi_i(r_2) & \phi_j(r_2) \end{bmatrix}$

form a complete orthonormal basis for two-electron wavefunction space.

• Any
$$\Psi(r_1, r_2) = \sum_{i < j} c_{ij} \Psi_{ij}$$

First quantization

- N-electron wavefunction $\Psi(r_1, r_2, ..., r_N)$.
 - Solve single-electron orbitals $\phi_1, \phi_2, \phi_3, \phi_4$...
 - Slater determinant of n orbitals to form the basis.
 - Linear combination of basis to form any wavefunction.
- Redundancy in first quantization:
 - Electrons are identical.
 - $\Psi(r_1, r_2, r_3, \dots, r_N) = -\Psi(r_2, r_1, r_3, \dots, r_N)$
 - Use bitstring to represent occupation of orbitals.
 - 01100100... means the basis that's the Slater determinant of ϕ_2, ϕ_3, ϕ_6 .

Second quantization

- First quantization to second quantization
 - Cartesian space to Fock space
 - A Fock space basis: $|0101\rangle_F$ means among the 4 orbitals, orbital 2 and 4 occupied, orbital 1 and 3 unoccupied
 - A Cartesian space wavefunction: $\Psi(r_1, r_2) = \frac{1}{\sqrt{2!}} \begin{bmatrix} \phi_2(r_1) & \phi_4(r_1) \\ \phi_2(r_2) & \phi_4(r_2) \end{bmatrix}$
 - Hamiltonian: gradient and position operator to creation and annihilation operator
 - Creation/annihilation operator: a^{\dagger} and a.

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

Second Quantization

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

• Creation operator: $a^{\dagger}|0\rangle_F = |1\rangle_F$, $a^{\dagger}|1\rangle_F = 0$

• Annihilation operator: $a|0\rangle_F = 0$, $a|1\rangle_F = |0\rangle_F$

$$h_{pq} = \int \phi_p^*(r) \left(-\frac{1}{2} \nabla^2 - \sum_A \frac{Z_A}{|r - R_A|} \right) \phi_q(r) d^3r$$
$$V_{pqrs} = \int \int \phi_p^*(r_1) \phi_q^*(r_2) \frac{1}{|r_1 - r_2|} \phi_r(r_1) \phi_s(r_2) d^3r_1 d^3r_2$$

• In practice: when doing integrals, use "STO-3g" to approximate the wavefunction with 3 Gaussians.

Second Quantization

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

- Takeaway:
 - In practice, set a limit for *M* orbitals.
 - The Hamiltonian becomes a $2^M \times 2^M$ Hermitian matrix.
 - Solve Schrödinger equation: $H|\Psi\rangle = E|\Psi\rangle$
 - A PDE problem to a Matrix eigenvalue problem.

Quantum chemistry algorithm

$$E_0 = \min_{\vec{\theta}} \langle \Psi(\vec{\theta}) | \hat{H} | \Psi(\vec{\theta}) \rangle$$

Unitary Coupled Cluster with Singles and Doubles

•
$$|\Psi(\vec{\theta})\rangle = e^{T(\vec{\theta}) - T^{\dagger}(\vec{\theta})} |\Psi_{HF}\rangle$$

• $T(\vec{\theta}) = \sum_{p,q} \theta_{pq} a_p^{\dagger} a_q + \sum_{p < q,r < s} \theta_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$

- $A = e^B$, B is anti-Hermitian $\Rightarrow A$ is unitary
- First-Order Trotter Approximation $e^{A+B} = \lim_{n \to \infty} (e^{A/n} e^{B/n})^n$

Unitary Coupled Cluster with Singles and Doubles

- After first-order trotter approximation with n=1: $|\Psi(\vec{\theta})\rangle = \prod_{p,q} e^{\theta_{pq}\left(a_{p}^{\dagger}a_{q}-a_{q}^{\dagger}a_{p}\right)} \prod_{p < q,r < s} e^{\theta_{pqrs}\left(a_{p}^{\dagger}a_{q}^{\dagger}a_{s}a_{r}-a_{r}^{\dagger}a_{s}^{\dagger}a_{q}a_{p}\right)} |\Psi_{HF}\rangle$
- Each p,q or p,q,r,s corresponding exponential operation is unitary.
- How to implement on quantum computer?

Creation/Annihilation operator

• Anticommutation: $\{A, B\} = AB + BA$

•
$$\{a_{p}^{\dagger}, a_{q}^{\dagger}\} = 0, \{a_{p}, a_{q}\} = 0, \forall p, q$$

• $\{a_{p}^{\dagger}, a_{q}\} = \begin{cases} 0 \ if \ p \neq q \\ 1 \ if \ p = q \end{cases}$

- You can't create more than two electrons on one orbital.
 - $a_p^{\dagger}a_p^{\dagger} = 0$ because $\left\{a_p^{\dagger}, a_p^{\dagger}\right\} = 0$
- Swap two electrons, create a negative sign

•
$$a_p^{\dagger}a_q^{\dagger} = -a_q^{\dagger}a_p^{\dagger}$$
 because $\left\{a_p^{\dagger}, a_q^{\dagger}\right\} = 0$

Jordan-Wigner Encoder

• Pauli matrices:

$$X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, Y = \begin{bmatrix} -i \\ i \end{bmatrix}, Z = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• $a_p \coloneqq Z_0 \dots Z_{p-1} \frac{X_p + iY_p}{2}$
• $a_p^{\dagger} \coloneqq Z_0 \dots Z_{p-1} \frac{X_p - iY_p}{2}$

• Example: Pauli string $YYXY := Y \otimes Y \otimes X \otimes Y$

Jordan-Wigner Encoder

• Example:
$$a_0 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $a_0^{\dagger} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

- Quantum state: $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Annihilation operator:

•
$$a_0|0\rangle = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0, a_0|1\rangle = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |0\rangle$$

• Creation operator:

•
$$a_0^{\dagger}|0\rangle = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |1\rangle, a_0^{\dagger}|1\rangle = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$